322741(22)

B. E. (Seventh Semester) Examination, April-May 2021

(New Scheme)

(CSE & IT Engg.)

ADVANCED COMPUTER ARCHITECTURE

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all the questions. Part (a) from each question is compulsory. Attempt any two parts from parts (b), (c) and (d) of each question. Part (a) carry 2 marks & rest of carries 7 marks.

Unit-l

- 1. (a) Define speedup factor in pipeline.
 - (b) A reservation table of a 3 stage pipeline is given

below:

	1	2	3	4	5	6
S_1	×				×	
S ₂		(15	×	141		
S_3		×	Eron	×	ma.c	×

- (i) Determine latencies in the forbidden list and the collision vector.
- (ii) Draw the state diagram for this pipeline.
- (iii) Determien the minimal average latency.
- (c) Explain Instruction pipeline and operations in it in detail.
- (d) What do you mean by super-scalar processor? Explain it with design and functionalities.

mischauge it were tree that the Unit-II have observed must

- 2. (a) What is write back and write through cache?
 - (b) Describe associative and set-associative cache memory organization in detail.
 - (c) What do you mean by memory bandwidth? Explain how it can be increased.

- (d) Write short notes on :
 - (i) Snoopy bus protocol
 - (ii) Interleaved memory organization

Unit-III

- 3. (a) Explain control dependency.
 - (b) What are Bernstein's conditions? Draw the dependency graph for the following set of statements:

$$1 : A = B + C$$

3 :
$$D(I) = A*E(I)$$

$$4 : S = E(I) * 5$$

$$5: T = T + S$$

$$6: A = D(N) - 7$$

- (c) Explain data-flow computers and show its advantages over control-flow systems with the help of any suitable examples.
- (d) Explain SISD and SIMD machines in detail.

Unit-IV

PTO

4.	(a)	Define distributed memory.	
	(b)	Explain vector instruction types in detail.	
	(c)	Explain parallel algorithms for SIMD computers.	
	(d)	Describe performance of parallel processing in multiprocessor architectures.	
		Unit-V	
5.	(a)	What is diameter of a Network?	ě
	(b)	Explain dynamic interconnection networks.	
	(c)	Explain multistage network with example.	
	(d)	Write short notes on:	
		(i) Network size and node degree	2
		(ii) Broad cast and multicast	2
		(iii) Static networks	3